Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(5): 103610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489887

RESUMEN

This study investigated the effect of Ethylenediamine dihydroiodide (EDDI) on growth performance, immune function and intestinal health of meat ducks challenged with Avian pathogenic Escherichia coli (APEC). A total of 360 one-day-old Cherry Valley ducks with similar body weight were randomly allocated to 6 treatments (6 floor cages, 10 birds/cage). A 3 × 2 factor design was used with 3 dietary iodine levels (0, 8, 16 mg/kg in the form EDDI and whether APEC was challenged or not at 7-day-old ducks. The feeding period lasted for 20 d. The results showed that the addition of EDDI reduced APEC-induced decrease of the 20-d weight loss of meat ducks (P < 0.05), and alleviated the inflammatory response of liver tissue induced by APEC challenge in meat ducks. In terms of immune function, EDDI supplementation reduced the immune organ index and increased the immune cell count of meat ducks, reduced the level of endotoxins in the serum of meat ducks (P < 0.05), as well as inhibited the expression levels of liver and spleen inflammatory factors and TLR signaling pathway related genes induced by APEC (P < 0.05). In terms of intestinal health, EDDI inhibited APEC-induced decreases in ZO-3 genes expression and increases in IL-1ß and TNF-α expression, increased relative abundance of beneficial bacteria in the cecum and content of metabolites. Pearson correlation analysis showed that there was a significant correlation between liver inflammatory factors and TLR4 signaling pathway genes, and there might be a significant correlation between intestinal microbial flora and other physiological indexes of meat ducks, which indicated that EDDI could reduce the damage to immune function and intestinal health caused by APEC challenge through regulating the structure of intestinal flora. Collectively, our findings suggest that the EDDI can promote growth performance, improve immune function and the intestinal barrier in APEC-challenged meat ducks, which may be related to the suppression of NF-κB signal.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Patos , Infecciones por Escherichia coli , Escherichia coli , FN-kappa B , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Alimentación Animal/análisis , FN-kappa B/metabolismo , Dieta/veterinaria , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/prevención & control , Suplementos Dietéticos/análisis , Transducción de Señal/efectos de los fármacos , Distribución Aleatoria , Intestinos/efectos de los fármacos , Relación Dosis-Respuesta a Droga
2.
J Sci Food Agric ; 104(5): 2772-2782, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38010266

RESUMEN

BACKGROUND: Distillers dried grains with solubles (DDGS) are rich in nutrition, and they are potential protein feed raw material. However, the existence of cellulose, hemicellulose and lignin hinders animals' digestion and absorption of DDGS. Making full use of unconventional feed resources such as DDGS can alleviate the shortage of feed resources to a certain extent. This research investigated the effects of twin-screw extrusion on the macromolecular composition, physical and chemical properties, surface structure and in vitro protein digestibility (IVPD) of DDGS. RESULTS: The findings showed that extrusion puffing significantly increased the protein solubility, bulk density, water holding capacity, and swelling capacity, while significantly decreased hemicellulose and crude protein content, particle size and zeta potential of DDGS. The structure damage of DDGS induced by the extrusion was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FITR) spectroscopy and X-ray diffraction (XRD) analysis. Interestingly, no random coil was observed in the analysis of the secondary structure, and extrusion promoted the transformation of α-helix and ß-turn to ß-sheet, which led to significant increases in protein solubility and IVPD of DDGS (P < 0.05). Additionally, correlation analysis revealed that IVPD and PS had a positive relationship. CONCLUSION: Extrusion puffing was an ideal pretreatment method for DDGS modification to improve in vitro protein digestibility. © 2023 Society of Chemical Industry.


Asunto(s)
Digestión , Zea mays , Animales , Zea mays/química , Alimentación Animal/análisis , Dieta , Estructura Secundaria de Proteína , Fenómenos Fisiológicos Nutricionales de los Animales , Grano Comestible/química
3.
Poult Sci ; 102(11): 103022, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639753

RESUMEN

This study investigated the effect of ethylenediamine dihydroiodide (EDDI) on the growth performance, thyroid function, immune function, intestinal development, intestinal permeability, intestinal barrier functions and microbial characteristics of Cherry Valley ducks. The results showed that the addition of EDDI significantly increased body weight, average daily gain, serum level of lymphocytes, basophils, triiodothyronine, thyroxine and thyrotropin, villus height, and villus height-to-crypt depth ratio, and significantly decreased crypt depth, diamine oxidase, serum D-Lactic acid of ducks (P < 0.05). EDDI also significantly up-regulated the mRNA expression of zonula occludens-1, zonula occludens-2, zonula occludens-3, mucin 2, secretory immunoglobulin A, interleukin-10 and avian ß-defensin 2 in the jejunum and ileum (P < 0.05), and down-regulated the mRNA expression of occludin and interleukin-6 in the jejunum and ileum. Additionally, the addition of EDDI significantly increased cecal level of acetic acid, propionic acid, butyric acid (P < 0.05). Cecal microbiome analysis indicated that the addition of EDDI significantly increased the relative abundance of these microorganisms that can produce short-chain fatty acids, mainly including Actinobacteria, Verrucomicrobia, Clostridiales and Lactobacillales, and decreased the relative abundance of pathogenic bacteria Deferribactere. Interestingly, triiodothyronine and thyroxine levels were highly positively correlated with the relative abundance of Actinobacteria. These results revealed that the addition of EDDI could promote the growth and development of meat ducks by improving their thyroid function, immune function, intestinal development and intestinal barrier functions of ducks.

4.
Anim Nutr ; 11: 264-275, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36263405

RESUMEN

Ferrous glycinate (Fe-Gly) has been increasingly used as iron fortification in the diets of weaned piglets and broilers, but the effect of Fe-Gly on intestinal barrier function in meat ducks has not been well defined. This study therefore investigated the effect of Fe-Gly on apparent nutrient utilization, hematological indices, intestinal morphological parameters, intestinal barrier function and microbial composition in meat ducks. A total of 672 one-day-old Cherry Valley ducks were randomly divided into 6 treatments (8 replicates for each treatment and 14 ducks for each replicate) and fed diets with 0 (control), 30, 60, 90 and 120 mg/kg Fe-Gly or 120 mg/kg FeSO4 for 35 d. The results showed that diets supplemented with Fe-Gly significantly increased average daily gain (ADG), average daily feed intake (ADFI), hematocrit (HCT), mean cell volume (MCV), the apparent utilization of dry matter (DM) and metabolizable energy (ME), villus height (VH) and villus height-to-crypt depth ratio (V:C) (P < 0.05). Fe-Gly also significantly up-regulated barrier-related genes including zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), mucin 2 (MUC2) and lysozyme (LYZ) (P < 0.05), and down-regulated the mRNA expression of claudin-2 (CLDN2) and occludin (OCLN) in the jejunum (P < 0.05). The 16S rRNA sequence analysis indicated that the diet with Fe-Gly had a higher relative abundance of Intestinimonas and Romboutsia (P < 0.05), which have an ability to produce short chain fatty acids (SCFAs), especially butyric acid. It also decreased the relative abundance of pathobiont, including Megamonas, Eubacterium_coprostanoligenes_group and Plebeius (P < 0.05). Additionally, diets supplemented with 120 mg/kg Fe-Gly significantly increased the apparent utilization of DM and ME (P < 0.05) and decreased the relative abundance of Megamonas_unclassified and Bacteroides_unclassified compared with those fed 120 mg/kg FeSO4 (P < 0.05). These results revealed that diets supplemented with Fe-Gly exerted a potent beneficial effect on physical, chemical, immune and microbial barriers, thereby improving the integrity of the intestinal structure, promoting the digestion and absorption of nutrients to a certain extent, and ultimately elevating the growth performance of ducks.

5.
Poult Sci ; 100(12): 101462, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731734

RESUMEN

This study was conducted to investigate the influence of zinc (Zn) supplementation on growth performance, intestinal development and intestinal barrier function in Pekin ducks. A total of 480, one-day-old male Pekin ducks were divided into 6 groups with 8 replicates: 0 mg/kg Zn, 0 mg/kg Zn +0.5 mg/kg lipopolysaccharide (LPS), 30 mg/kg Zn, 30 mg/kg Zn +0.5 mg/kg LPS, 120 mg/kg Zn, 120 mg/kg Zn +0.5 mg/kg LPS. The duck primary intestinal epithelial cells (DIECs) were divided into 6 groups: D-Zn (Zinc deficiency, treated with 2 µmol/L zinc Chelator TPEN), A-Zn (Adequate Zinc, basal medium), H-Zn (High level of Zn, supplemented with 20 µmol/L Zn), D-Zn + 20 µg/mL LPS, A-Zn + 20 µg/mL LPS, H-Zn + 20 µg/mL LPS. The results were as follows: in vivo, with Zn supplementation of 120 mg/kg reduced LPS-induced decrease of growth performance and intestine damage (P < 0.05), and increased intestinal digestive enzyme activity of Pekin ducks (P < 0.05). In addition, Zn supplementation also attenuated LPS-induced intestinal epithelium permeability (P < 0.05), inhibited LPS-induced the expression of proinflammatory cytokines and apoptosis-related genes (P < 0.05), as well as reduced LPS-induced the intestinal stem cells mobilization of Pekin ducks (P < 0.05). In vitro, 20 µmol/L Zn inhibited LPS-induced expression of inflammatory factors and apoptosis-related genes (P < 0.05), promoted the expression of cytoprotection-related genes, and attenuated LPS-induced intestinal epithelium permeability in DIECs (P < 0.05). Mechanistically, 20 µmol/L Zn enhanced tight junction protein markers including CLDN-1, OCLD, and ZO-1 both at protein and mRNA levels (P < 0.05), and also increased the level of phosphorylation of TOR protein (P < 0.05) and activated the TOR signaling pathway. In conclusion, Zn improves growth performance, digestive enzyme activity, and intestinal barrier function of Pekin ducks. Importantly, Zn also reverses LPS-induced intestinal barrier damage via enhancing the expression of tight junction proteins and activating the TOR signaling pathway.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Suplementos Dietéticos , Patos , Mucosa Intestinal , Zinc/administración & dosificación , Animales , Patos/crecimiento & desarrollo , Lipopolisacáridos , Masculino
6.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 72-79, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33021002

RESUMEN

Moringa oleifera and Morus alba leaves are nutritious non-traditional feed ingredients containing bioactive substances. This study was to evaluate the potential application of dietary Moringa and Morus leaf powder on the growth traits, carcass characteristics and meat quality of finishing pigs. Moringa did not alter growth performance or carcass characteristics, but it decreased meat b* value, increased MyHCIIa and decreased MyHCIIx mRNA levels, and increased CP and concentrations of Ala, Thr, Ile, Lys and Pro in longissimus thoracis. Morus increased final BW, ADFI and ADG, decreased F/G ratio, improved slaughter weight, carcass weight, carcass yield and meat a* value, and decreased shear force, drip loss, MyHCIIx and MyHCIIb mRNA levels, and increased MyHCI and MyHCIIa mRNA levels. Morus also increased CP, Glu, Gly, Ala, Arg, Ile, Phe, Pro, Ser, Tyr and Asp, and C16:1, C18:1n9c, C20:4n6, C18:3n3, C20:3n3, C22:1n9 and n-3 PUFA, but decreased C12:0 and C16:0. In summary, Morus improved the parameters and held great potential as an unconventional feed crop.


Asunto(s)
Moringa oleifera , Morus , Carne de Cerdo , Carne Roja , Alimentación Animal/análisis , Animales , Composición Corporal , Suplementos Dietéticos/análisis , Carne/análisis , Hojas de la Planta , Porcinos
7.
PLoS One ; 15(8): e0237357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32780763

RESUMEN

Fermented feeds contain abundant organic acids, amino acids, and small peptides, which improve the nutritional status as well as the morphology and microbiota composition of the intestine. Ginseng polysaccharides exhibit several biological activities and contribute to improving intestinal development. Here, Xuefeng black-bone chickens were fed a basal diet fermented by Bacillus subtilis, Saccharomyces cerevisiae, Lactobacillus plantarum, and Enterococcus faecium, with or without ginseng polysaccharides. The 100% microbially fermented feed (Fe) and 100% microbially fermented feed and ginseng polysaccharide (FP) groups showed significantly increased villus height and villus height to crypt depth ratio, and decreased crypt depth in the jejunum. In the 100% complete feed and ginseng polysaccharide (Po) group, the villus height to crypt depth ratio was significantly increased, crypt depth was reduced, and villus height remained unaffected. Next, we studied the intestinal microbial composition of 32 Xuefeng black-bone chickens. A total of 10 phyla and 442 genera were identified, among which Firmicutes, Proteobacteria, and Bacteroidetes were the most dominant phyla. At the genus level, Sutterella and Asteroleplasma abundance increased and decreased, respectively, in the FP and Po groups. Sutterella abundance was positively correlated to villus height and villus height to crypt depth ratio, and negatively correlated to crypt depth, and Asteroleplasma abundance was positively correlated to crypt depth and negatively correlated to villus height to crypt depth ratio. At the species level, the FP group showed significantly increased Bacteroides_vulgatus and Eubacterium_tortuosum and decreased Mycoplasma_gallinarum and Asteroleplasma_anaerobium abundance, and the Po group showed significantly increased Mycoplasma_gallinarum and Asteroleplasma_anaerobium abundance. Moreover, bacterial abundance was closely related to the jejunum histomorphology. Asteroleplasma_anaerobium abundance was positively correlated with crypt depth and negatively correlated with villus height to crypt depth ratio. Mycoplasma_gallinarum abundance was positively correlated to villus height, and Bacteroides_vulgatus and Eubacterium_tortuosum abundance was positively correlated with villus height to crypt depth ratio and negatively correlated with crypt depth. Therefore, fermented feeds with ginseng polysaccharides may be used as effective alternatives to antibiotics for improving intestinal morphology and microbial composition.


Asunto(s)
Alimentación Animal , Pollos , Fermentación , Intestinos/efectos de los fármacos , Microbiota/efectos de los fármacos , Panax/química , Polisacáridos/farmacología , Animales , Biodiversidad , Intestinos/citología , Intestinos/microbiología
8.
Front Microbiol ; 11: 1014, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528442

RESUMEN

Herbal tea residue (HTR) is a reusable resource with high nutritional value and bioactive substances content, which can be used as a feed additive. In the present study, HTRs were fermented by lactic acid bacteria, and then fed to a total of 90 Holstein heifers, termed as CN, LC, and HC groups. The supplementation improved physiological indices of respiratory frequency and rectal temperature, increased the concentrations of immunoglobulins and antioxidant capacity-related parameters, and reduced the concentrations of heat stress-related parameters and serum hormones. The heifers' body height increased considerably, while their energy metabolism rates were stimulated in response to fermented HTRs. We also studied the fecal microbial community composition of 8 Holstein heifers in each group, and employed correlation analysis with tested parameters. We found that the bacteria were closely related to characteristics including the energy utilization rate, growth performance, serum biochemical indexes, and fecal SCFA levels of the heifers. Based on our findings, the 5% fermented HTRs replaced corn silage might be advantageous for the heifers' characteristics under heat stress.

9.
BMC Vet Res ; 16(1): 123, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349776

RESUMEN

BACKGROUND: Buffalo milk is rich in various nutritional components and bioactive substances that provide more essential health benefits to human body. Recently, exosome identified in the breast milk has been reported as a neotype nutrient and can mediate intercellular communication with exosomal miRNAs. In the present study, we therefore hypothesized that exosome-derived miRNAs from buffalo milk would play the potential physiological importance of consumption of buffalo milk. RESULTS: We isolated exosomes from buffalo and cow milk samples that were obtained at mid-lactation period, and the exosomal miRNA profiles were then generated using miRNA-seq. In addition, miRNAomes of pig, human and panda milk exosomes were downloaded from GEO database. Finally, a total of 27 milk exosomal miRNA profiles that included 4 buffalo, 4 cow, 8 pig, 4 human and 7 panda were analyzed using the miRDeep2 program. A total of 558 unique miRNA candidates existed across all species, and the top 10 highly expressed miRNA were evolutionarily conserved across multiple species. Functional analysis revealed that these milk enriched miRNAs targeted 400 putative sites to modulate disease resistance, immune responsiveness and basic metabolism events. In addition, a total of 32 miRNAs in buffalo milk were significantly up-regulated compared with non-buffalo milks, while 16 were significantly down-regulated. Of interest, functional analysis showed that up-regulated miRNAs were mainly related to host metabolism processes, while the predicted functions of down-regulated miRNAs were enriched in immune response. CONCLUSION: In this study, we explored the exosomal miRNAome differences between milks of different animals, expanding the theoretical basis for potential applications of the miRNA-containing vesicles.


Asunto(s)
Búfalos/genética , Exosomas/genética , MicroARNs/genética , Animales , Búfalos/inmunología , Bovinos , Exosomas/inmunología , Femenino , Perfilación de la Expresión Génica , Humanos , Leche/inmunología , Leche/metabolismo , Leche Humana/inmunología , Leche Humana/metabolismo , Porcinos , Ursidae
10.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 291-299, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31663169

RESUMEN

Moringa oleifera has been considered as a potential functional feed or food, since it contains multiple components beneficial to animal and human. However, little is known about the effects of Moringa oleifera supplementation on productive performances in sows. In the current study, the results showed that dietary Moringa oleifera significantly decreased the farrowing length and the number of stillborn (p < .05), while had an increasing trend in the number of live-born (0.05 < p < .10). Furthermore, 8% Moringa oleifera supplementation significantly elevated protein levels in the colostrum (p < .05); 4% Moringa oleifera lowed serum urea nitrogen of sows after 90 days of gestation (p < .05) and significantly decreased serum glucose on 10 days of lactation (p < .05). Both groups showed significant elevation in serum T-AOC activity (p < .05). The serum malondialdehyde (MDA) of sows declined significantly in 4% Moringa oleifera addition group (p < .05). 8% Moringa oleifera meal significantly elevated serum CAT activity after 60 days of gestation (p < .05), while decreased the serum MDA level and increased the serum GSH-Px activity of sows at 10 days of lactation (p < .05). Of piglets, both two dosages of Moringa oleifera supplementation essentially reduced the serum urea nitrogen (p < .05), and 4% Moringa oleifera meal increased serum total protein (p < .05). In addition, piglets that received 8% Moringa oleifera had the highest serum CAT and SOD activities among all groups (p < .05). The present study indicated that Moringa oleifera supplementation could enhance the reproduction performances, elevate protein levels in the colostrum and improve the serum antioxidant indices in both sows and piglets.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Moringa oleifera/química , Porcinos/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calostro/química , Suplementos Dietéticos , Femenino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Porcinos/sangre
11.
J Org Chem ; 84(4): 1951-1958, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30648865

RESUMEN

This is the first time that the amidato lanthanide amides ({L nLn[N(SiMe3)2]THF}2 ( n = 1, Ln = Eu (1); n = 2, Ln = Eu (3), Yb (4); HL1 = tBuC6H4CONHC6H3( iPr)2; HL2 = C6H5CONHC6H3( iPr)2) and {L3Eu[N(SiMe3)2]THF}{L32Eu(THF)2} (2) (HL3 = ClC6H4CONHC6H3( iPr)2)) were applied in the cycloaddition reactions of aziridines with carbon dioxide (CO2) or carbon disulfide (CS2) under mild conditions. The corresponding oxazolidinones and thiazolidine-2-thiones were obtained in good to excellent yields with good functional group tolerance.

12.
Front Genet ; 10: 1347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117411

RESUMEN

Heat stress negatively influences milk production and disrupts normal physiological activity of lactating sows, but the precious mechanisms by which hyperthermia adversely affects milk synthesis in sows still remain for further study. Circular RNAs are a novel class of non-coding RNAs with regulatory functions in various physiological and pathological processes. The expression profiles and functions of circRNAs of sows in lactogenesis remain largely unknown. In the present study, long-term heat stress (HS) resulted in a greater concentration of serum HSP70, LDH, and IgG, as well as decreased levels of COR, SOD, and PRL. HS reduced the total solids, fat, and lactose of sow milk, and HS significantly depressed CSNαs1, CSNαs2, and CSNκ biosynthesis. Transcriptome sequencing of lactating porcine mammary glands identified 42 upregulated and 25 downregulated transcripts in HS vs. control. Functional annotation of these differentially-expressed transcripts revealed four heat-induced genes involved in lactation. Moreover, 29 upregulated and 21 downregulated circRNA candidates were found in response to HS. Forty-two positively correlated circRNA-mRNA expression patterns were constructed between the four lactogenic genes and differentially expressed circRNAs. Five circRNA-miRNA-mRNA post-transcriptional networks were identified involving genes in the HS response of lactating sows. In this study we establish a valuable resource for circRNA biology in sow lactation. Analysis of a circRNA-miRNA-mRNA network further uncovered a novel layer of post-transcriptional regulation that could be used to improve sow milk production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...